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A model of epidemic spreading in a population with a hierarchical structure of interpersonal interactions is
described and investigated numerically. The structure of interpersonal connections is based on a scale-free
network. Spatial localization of individuals belonging to different social groups, and the mobility of a contem-
porary community, as well as the effectiveness of different interpersonal interactions, are taken into account.
Typical relations characterizing the spreading process, like a range of epidemic and epidemic curves, are
discussed. The influence of preventive vaccinations on the spreading process is investigated. The critical value
of preventively vaccinated individuals that is sufficient for the suppression of an epidemic is calculated. Our
results are compared with solutions of the master equation for the spreading process and good agreement of the
character of this process is found.
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I. INTRODUCTION

The structure and the dynamics of complex networks have
been extensively investigated in recent years[1–11]. It was
found that many real-world networks, like the web of human
sexual contacts[1], e-mail networks[2], or the internet[3],
have similar properties. They are called scale-free networks,
because the probability that the number ofk links connected
to a node equalsPskd,k−g [4]. Many authors have used this
type of complex network to model a network of social con-
tacts[9,12–15]. In particular, complex networks with a hier-
archical structure, corresponding to the real structure of hu-
man communities, have been studied[7,16–18], e.g., an
epidemic spreading in a population with a two-level structure
of interpersonal interactions was analyzed in Ref.[19]. A
small average shortest path between nodes(individuals) and
a high value of the clustering coefficient[5,6], e.g., the prob-
ability that “a friend of my friend is my friend” in the com-
munity is high, are the most important properties of social
networks. These properties are typical for the structure of a
social network and they have a strong influence on dynami-
cal phenomena in the population.

In our work we investigate an epidemic spreading in the
human population, treated as a scale-free network, taking
into account spatial localization of individuals, with a three-
level hierarchical structure of interpersonal interactions.

We assume that each individual belongs to some social
groups[7]: from the smallest one(e.g., family or friends), to
a large one(e.g., a community of the whole city). Interper-
sonal interactions among individuals in the same group are
stronger than interactions among individuals from different
groups. The smaller the group, the stronger an individual’s
influence on the other individuals in that group. From the
point of view of the spreading of an epidemic, most effective
are social connections with the family, close friends, etc.;

however, random contacts with unknown individuals are im-
portant too. Such a random contact is most probable for in-
dividuals, who live(or work) in the same place, e.g., in the
same building. On the other hand, a contemporary commu-
nity is very mobile; therefore there is a nonzero probability
of contact between two arbitrarily chosen individuals from a
population. Such contact can occur, e.g., commuting, in the
cinema or in another public place, and can result in infection
of a new individual. In our model we take into account this
hierarchical structure of a social network, with interpersonal
connections between neighbors and contacts between ran-
dom individuals referring to the mobility of a community.

The spreading of epidemics has been investigated by
many authors with different models of interpersonal interac-
tions [20–27]. The hierarchical structure of interpersonal in-
teractions described in the present paper seems to be more
plausible for modeling real social networks.

II. THE MODEL

In our model each individual is in one of four permitted
states: healthy and susceptiblesHd, infected sId, ill sSd,
healthy and unsusceptible or deadsRd. The state of the indi-
viduals evolves in time and depends on their previous state
and the connections or random contacts with other individu-
als. The probabilities of transitions between different states
in one time step are described with the following parameters:
WH→I, the probability that a susceptible individual will be
infected by an ill individual(it also denotes how contagious
the disease is); WI→S, the probability that the infected indi-
vidual becomes ill(this value is connected with the average
time of incubation); WS→R, the probability that an ill indi-
vidual will recover, die, or be isolated from the rest of the
population(e.g., in a hospital).

The spreading process in a population can be treated as a
nonstationary process, which is described by a master equa-
tion, and that approach was applied in a number of studies
[14,23,28–32]. The results obtained in our model will be
compared with the solutions of this equation in Sec. IV. For
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the present case the changes in time of the probabilitiesPXstd
that an individual is in one of the possible statesX (where
X=H , I , S, or R) are described with the master equation

dPHstd
dt

= − WH→IPSstdPHstd,

dPIstd
dt

= WH→IPSstdPHstd − WI→SPIstd,

dPSstd
dt

= WI→SPIstd − WS→RPSstd,

dPRstd
dt

= WS→RPSstd. s1d

This simple analytical model has one serious
disadvantage—it does not take into account the structure of
interpersonal interactions in the human population which is
included in the present paper. In our model the population
and its structure are described as follows. The population
consists ofN=L3L individualsSij localized by the indices
i , j in a two-dimensional lattice. Connections and random
contacts between individuals have a hierarchical structure.
The connections of each individual withk neighbors is the
first level of interpersonal interactions[see Fig. 1(a)]. All
connections are symmetrical and have the same value. We
have assumed that the network of social connections is scale-
free, i.e., the distribution of connectivity of individuals has
the form Pskd,k−g (g=3 was used in most of computa-
tions), with k generated from the rangeskmin,kmaxd. Initially
all individuals are not connected. Next, connections between
individuals are created with the probabilityPsld, depending
on the distancel between individualsSij and Snm, wheren
= i ± l1,m= j ± l2 (l1, l2 are two independent random variables
and the sign is generated with the probability 0.5):

Psld ,
1

1 + expfsl − ad/bg
+ 0.01

L − l

L
. s2d

The second term in Eq.(2) causesPsld to reach zero
slowly enough. The whole population is divided into local
groups ofG=LG3LG individuals, where the size of those
groups is connected by the parametersa=LG andb=LG/4 of
the distribution(2). Thus, most connections are created be-
tween individuals located in the same local group. The struc-
ture of the network from the point of view of a certain indi-
vidual is depicted in Fig. 1(a). Having created the connection
betweenSij andSnm, the connections between the individual
Snm and each neighbor of the individualSij are created with
the probabilitiespc [Fig. 1(b)]. Similarly, new connections
betweenSij and the neighbors of the individualSnm are cre-
ated, also with the probabilitiespc. However, each pair of
individuals can be connected only once, and a new connec-
tion is added to each individual only when its actual number
of connections is smaller than the valuekij (wherei , j =1, 2,
…, L) generated with the distributionk−g. In this way a de-

sirable distribution of connectivity is obtained. It should be
noted that in this procedure the valuepc influences the clus-
tering coefficientC of the network[4,33]

C =K 2Eij

kijskij − 1dL s3d

whereEij is the number of connections between neighbors of
the i j th individual.

Let us describe the effectiveness of first-level connections
in the spreading of epidemics. The probability of an infection
of an individual by one ofk neighbors is

p1 = WH→IÎkS

k
s4d

where kS is the number of neighbors in the stateS. This
probability is a nonlinear function of the number of ill neigh-
bors and it increases fast for a low value ofkS, because
interpersonal connections are a more effective way of
spreading the epidemic than random contacts.

The second level of interpersonal interactions is random
contacts between individuals in the same local group ofG
individuals. They are most probable for individuals living(or

FIG. 1. An example of a network withL=24 andLG=8 (nine
local groups) from the point of view of theS12,12 individual, who is
connected withk12,12=6 neighbors and four of whose connections
are located in its local group(a). When a connection between two
individualsSij andSnm is created(solid line), the individualSnm is
connected with the neighbors of the individualSij . Next, the con-
nections between the neighborsSnm and the individualSij are cre-
ated(this is not shown in the figure). Each new connection(dashed
line) is created with the probabilitypc (b).
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working) in the same place, e.g., in the same building. In our
model the probability of infection resulting from such a ran-
dom contact is

p2 = WH→ISGS

G
D2

s5d

whereGS is the number of ill individuals in a local group.
The third level of interpersonal interactions is random

contacts between pairs of individuals who do not know each
other and are chosen arbitrarily from the whole population.
The probability of infection caused by such a contact does
not depend on the localization of the individuals:

p3 = WH→ISNS

N
D2

s6d

whereNS is the number of ill individuals in the whole popu-
lation. The nonlinear factors in Eqs.(5) and (6) cause the
probabilitiesp2 and p3 to initially increase very slowly and
become significant for a great number of ill individuals.

It can be seen that from the point of view of each indi-
vidual its interpersonal interactions have a hierarchical struc-
ture and they can be divided into three levels:k neighbors,
individuals from the same local group, and individuals from
the rest of the population. Note that, as results from Eqs.
(4)–(6) the probabilitiesp1, p2, and p3 of an infection of
each individual depend nonlinearly on the number of ill in-
dividuals and their localization in one of the above-
mentioned levels. This is why the probability of an infection
of a certain individual is greatest when an ill individual is
one of itsk neighbors, it is smaller when an ill individual
belongs to the same local group, and it is smallest when an ill
individual is located somewhere in the rest of the population.
Other probabilities of a transition between statesX,Y are
described by the parametersWX→Y, as in the master equation
[Eq. (1)].

III. RESULTS

Computations were performed for the initial conditions
with one ill sSd and randomly located individual and the rest
of the population healthly and susceptiblesHd. Synchronous
dynamics and the valuesL=200 and 500 were used.

Figure 2 shows the influence of the localization of the
source of infection in one of three levels of interpersonal
interactions on the number of newly infected individuals as a
function of time (epidemic curves). It can be seen that the
number of newly infected individuals resulting from connec-
tions withk neighbors is approximately ten times greater for
times 30, t,50 than in the case of random contacts. In the
first stage of the epidemic, new infections result from the
interactions withk neighbors(probability p1), whereas the
possibility of infection resulting from random contacts(p2
andp3) becomes significant when the number of ill individu-
als is large enough.

In our model it is possible to investigate the influence of
the value of the clustering coefficientC [Eq. (3)] on the
spreading process by changing the value ofpc. This problem
was also discussed in earlier papers[11,27]. The final num-

ber V of individuals in the statesRd when the epidemic dies
out (i.e., the range of the epidemic) is slightly influenced by
C, but the progress of the epidemic depends significantly on
the value ofC. As is shown in Fig. 3, the greaterC, the
greater the timetmax in which the number of ill individuals
reaches its maximum value—wmax=NSstmaxd /N. Moreover,
the value of this maximum decreases with increasingC.
Higher values ofC cause the number of individuals grouped
in clusters of highly connected nodes to increase. When one
ill individual appears in a cluster, first individuals from that

FIG. 2. Epidemic curves(the number of newly infected indi-
viduals per time step) as a function of time for different types of
interpersonal interactions. Infections resulting from interpersonal
connections, curvea; infections resulting from random contacts
with the individuals from a local group, curveb; infections resulting
from random contacts with individuals from the rest of the popula-
tion, curve c. The values of the other parameters areg=3, L
=500, LG=20, WH→I =0.5, WI→S=0.5, WS→R=0.5, kmin=8, and
kmax=24.

FIG. 3. The timetmax in which the number of ill individuals
reaches a maximum value as a function of the clustering coefficient
C for different values ofWH→I. Results were averaged over 100
independent simulations. The values of other parameters areg
=3, L=200,LG=20, WI→S=0.5, WS→R=0.5,kmin=8, and kmax

=24.
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cluster are infected and next the infection spreads outside the
cluster. This slows down the spreading process in the whole
population.

Another important parameter is the time of incubation,
proportional in our model tot=1/WI→S. It was found that
the range of the epidemicV is influenced byt−1, i.e., the
higher the value oft−1, the greater the rangeV, especially
when the valueWH→I is low andWH→I ,WS→R. However,
for high enough values ofWH→I, the range of the epidemic
does not depend on the timet. On the other hand, the dura-
tion of the epidemicT andtmax decrease with decreasing time
of incubation—the epidemic spreads more rapidly[Fig.
4(a)]. The maximal number of ill individualswmax increases
with increasing parametert−1, as results from Fig. 4(b).

Changes in the parameterLG have the strongest influence
on the spatial character of the spreading process. For the
lowest values ofLG there is a small number of long range
connections, and infections of individuals spatially located
near ill individuals are more likely. The spreading process is
similar to the propagation of the wave front when secondary
sources of epidemics are activated[21]. With increasingLG,
the average length of connections increases. Therefore the

epidemic spreads slightly faster and the range of epidemic is
slightly smaller, which results from weaker interactions be-
tween individuals in the same local group.

The spreading process and the range of the epidemic are
strongly influenced by the parameterkmax. An increase in the
value of kmax (and, as a result, the total number of connec-

FIG. 4. The influence of the time of incubation on the timetmax

(a) and the maximum value of the number of ill individualswmax (b)
for different values ofWH→I and pc=0.5. Results were averaged
over 100 independent simulations. The values of the other param-
eters are as in Fig. 3.

FIG. 5. The influence of the maximum value of the connectivity
kmax on the range of the epidemicV (a), the maximum value of the
number of ill individualswmax (b), and the timetmax (c), for differ-
ent values ofWH→I and pc=0.5. Results were averaged over 100
independent simulations. The values of the other parameters are as
in Fig. 3.
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tions in the network) accelerates the spreading process and
increases the range of epidemicV in the population[Fig.
5(a)]. For higher values ofkmax the maximal number of ill
individualswmax has a higher value and occurs earlier[Figs.
5(a)–5(c)]. As results from Fig. 5 significant changes in
V, wmax, and tmax are observed only for low values ofkmax;
then the curves saturate. It is also interesting to discuss the
influence of the parameterWH→I on the aforementioned re-
lations. It was found that the higher the values ofWH→I, the
smaller the influence of the parameterkmax on the evolution
of the epidemic, i.e., the saturation of the curves
Vskmaxd , wmaxskmaxd, and tmaxskmaxd occurs for lower values
of kmax.

The connectivity of the individual—the initial source of
the epidemickstart — is another important parameter which
determines the time evolution of the epidemic. This param-
eter has a similar influence on the behavior ofV, wmax, and
tmax as the parameterkmax. An earlier work discusses the
influence of the localization of the initial source of epidemic
in the population on the spreading process[20].

It is important to investigate the influence of preventive
vaccination(the numberNR0 of the individuals in the stateR
at time t=0) on the spreading process. In Fig. 6(a) the time
tmax as a function of the number of preventively vaccinated
(and randomly chosen) individuals for different values of
WH→I is shown. For low values ofNR0 the time of duration
of the epidemicT increases, because the epidemic cannot
spread freely. For a certain value ofNR0, denotedNRC, the
time tmax reaches a maximum. The abrupt decrease of the
times tmax andT observed for bigger values ofNR0 indicates
that a phase transition occurs atNRC. This is proved by the
significant increase of the transient times(i.e., the time be-
fore the system reaches the point attractor) for NR0 slightly
smaller thanNRC, which is typical behavior for a phase tran-
sition. Such a phase transition in a regular lattice is the per-
colation phase transition[34]. When the value ofWH→I in-

FIG. 6. The relation between timetmax and the number of pre-
ventively vaccinated individualsNR0 for different values of
WH→I , kmax, and pc=0.5 (a),(b). The vaccinated individuals were
randomly chosen(a) or those with the highest value ofk were
vaccinated(b). The influence of the parameterg on the tmaxsNR0d
relation forWH→I =0.4, kmax=64, andpc=0.5 is shown in(c). Re-
sults were averaged over 100 independent simulations. The values
of the other parameters are as in Fig. 3.

FIG. 7. Comparison of the relationNIstd /N obtained in the
present model(solid line) with the solution of the master equation
(dashed line) for WH→I =0.5,WS→R=0.1, andpc=0.5. The values of
the other parameters are as in Fig. 3.
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creases, the part of the population that should be
preventively vaccinated in order to suppress an epidemic
also increases.

When preventively vaccinated individuals are not chosen
randomly, but individuals with the greatestk are chosen, the
results are similar[Fig. 6(b)]. However, the phase transition
occurs for a lower value ofNR0, which means that a smaller
number of preventively vaccinated individuals is needed to
suppress the epidemic. Note that, in this case, for values of
NR0 slightly smaller than the critical valueNRC, the timestmax
andT increase quickly withNR0. This means that the rate of
the spreading of the epidemic is much smaller, because only
individuals with smallk can be infected[cf. Fig. 5(b)]. In
Fig. 6(c) the influence of the parameterg is shown. It can be
seen that with decreasing values ofg, the timestmax and T
decrease and the phase transition occurs for a higher value of
NR0, because there are more connections between individuals
in the population.

IV. COMPARISON WITH MASTER EQUATION

In the master equation it is assumed that each individual
interacts with all other individuals in the population and in-
teractions with all individuals are treated in the same way. In
contemporary and large communities this is not true, because
people interact strongly only with a small(in comparison to
the size of the whole population) number of other individu-
als. In Fig. 7 results obtained from the analytical solutions of
the master equation(1) and from the present model are com-
pared. The two curves are similar but in the case of our
model the number of ill individuals increases faster and the
maximum appears for lower values of time than in the case
of the solutions of the master equation. When only one indi-
vidual is ill at t=0, the number of infected individualsNI
resulting from the master equation increases very slowly, be-
causePS is very small. In our model, however, strong inter-
actions with nearest neighbors are taken into account; as a
consequence the epidemic spreads faster, which explains the
discrepancy between the locations of the two curves.

V. CONCLUSIONS

A model of the spreading of an epidemic in a population
with hierarchical structure of interpersonal interactions has
been described and investigated numerically. The structure of
interpersonal connections is based on a scale-free network.
Spatial localization of individuals belonging to different so-
cial groups and the mobility of the contemporary community
are taken into account. It was found that the type of interper-
sonal interaction has an essential influence on the spreading
process. In particular, connections with the nearest neighbors
(i.e., family or friends) are more important than random con-
tacts between strange individuals.

As our calculations show, the epidemic spreads more
slowly in a population with a higher value of the clustering
coefficientC. This process depends also on the incubation
time t. With increasing values oft the duration timeT of the
epidemic increases. On the other hand, an increase of the
maximal number of connections in the population,kmax,
causes an increase of the range of the epidemic and acceler-
ates the spreading process.

In our model the influence of preventive vaccinations on
the spreading of the epidemic was investigated. We found a
critical value of preventively vaccinated individuals suffi-
cient for the suppression of the epidemic.

From all the results obtained a general conclusion
emerges that an increase of the probabilityWH→I decreases
the influence of all the parameters characterizing the social
network (i.e., kmax, LG, or clustering coefficient) on the dy-
namics and range of the epidemic. This observation shows
how dangerous are most contagious diseases.

Our results were compared with the solutions of the mas-
ter equation. The character of the two solutions is similar;
however, there are discrepancies between the locations of the
maxima of the relations of the number of ill individuals and
time. It is caused by the assumptions in our model which
take into account the hierarchical structure of interpersonal
interactions in a more plausible way than in the case of the
master equation.
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